

Health Technical Memorandum (HTM) 6 Electrical Services

- Published by UK Department of Health
- Provides guidance for design, installation and operation of electrical services in healthcare premise
- Aligns with BS standards
 e.g. BS 7671 (Wiring), BS 5266 (Emergency lighting)

https://www.gov.uk/government/collections/health-technical-memorandum-disinfection-and-sterilization

HTM o6 includes:

- O HTM 06-01 Electrical services supply and distribution
- O HTM 06-02 Electrical safety guidance for low voltage systems
- O HTM 06-03 Electrical safety guidance for high voltage systems in healthcare premises

2. HTM 06-01 Risk Management Approach

- Design of electrical services based on risk of loss of supply
- Risk Assessment Process

Risk Management Approach

Risk grading example

		_
	:_	۱.
К		K

Clinical Services	Risk due to Loss of Supply
A – Life support / Complex Surgery	Threat to life
B – Complex treatment and diagnostics	Clinical treatment and patient safety may be compromised
C - General Patient Care	Clinical treatment and patient safety not immediately compromised
D – Ambulant Care	Disruption, inconvenience and reduced environmental quality
E – Support services and circulation	No immediate effect on clinical treatment or safety of patients

Business Continuity Services	Risk due to Loss of Supply
I – Medical support services	Treatment or welfare of patient disrupted
II – Building Services and environmental control	Treatment or welfare of patients compromised
III – Building services safety and security	Safety and welfare of patients compromised
IV – Business support services	Treatment or welfare of patient not immediately compromise

Risk Management Approach

3. TYPICAL ELECTRICAL SYSTEM INFRASTRUCTURE

- Primary Electrical Infrastructure (PEI):Supplies from Power companies (HV / LV)
- Secondary Power Supply (SPS):
 - Standby Generators
 - CHP systems
- Tertiary Power Supply (TPS):
 - Static UPS
 - Rotary UPS
 - Battery packs

System design considerations

Diversity Factor

- Diversity of services and departments vary differently
- Should assess each service and department for a site-wide normalised diversity

Access for Maintenance

- Minimise disruption caused by maintenance
- Should not compromise space and access of other services (e.g. HVAC, steam system, medical gas system, etc.), and occupational safety of maintenance personnel

Growth and Change

- Spare transformer capacity for future expansion
- Spare space in distribution board for retrofitting

4. POWER QUALITY

Harmonics

- Caused by nonlinear loads (e.g. electronic equipment)
- Could cause overheating of cables and transformers
- Mitigated by installation of Harmonic filters in electrical distribution system

Total Harmonic Distortion (THD) Requirements

- HTM06-01 for hospitals:
 - 5% max. for voltage up to 0.4 kV
 - 4% max. for voltage up to 11 kV
- Building Energy Code (BEC) Table 7.6.2

Table 7.6.2: Maximum Total Harmonic Distortion of Current		
Designed Circuit Current (I, in A)	Maximum Total Harmonic Distortion (THD) in Percentage of Fundamental Current	
I < 40A	20.0 %	
40A ≤ I < 400A	15.0 %	
400A ≤ I < 800A	12.0 %	
800A ≤ I < 2000A	8.0 %	
I ≥ 2000A	5.0 %	

4. POWER QUALITY

Transient voltage and currents

- Short duration of abnormal voltage or current
- Voltage surge/spike
 - Caused by lightning or switching event
 - Mitigated by surge protection devices
- Voltage dip
 - Could cause voltage sensitive devices to malfunction
 - Mitigated by installation of UPS or voltage dip ride-through devices

Primary supply configuration (i)

Typical Configurations:

Primary and partial secondary LV
supply

introduces secondary supply (typically standby generator) to support part of network

Note:

LV incoming supply – minimal resilience achieved by grade D areas. Grade C area has partial secondary support from a generator with the ability (by manual switching) to be fully supported if a suitably rated generator is available.

Figure 11 Primary and partial secondary LV supply - single cable with partial primary/secondary distribution

Source: Extracted from HTM 06-01, 2017 edition

Primary supply configuration (ii)

Typical Configurations:

<u>Dual-primary and dual-secondary LV</u> <u>supply</u>

- with single-cable and
- with dual-cable infrastructure (auto-changeover) distribution for area of higher risk

Dual distribution to grade C risk areas and above with interleaved supply to risk grade B and A areas where final circuits are also supported by a UPS and Medical IT system.

Figure 14 Dual-primary and dual-HV-secondary supply – with single-cable and dual-interleaved (autochange) and local UPS-supported distribution

Secondary Supply

- Typically standby generator set AC generator driven by diesel engine
- N+1 configuration two generators each
 capable of full load or three
 generators each
 capable of 50% load

Source: Extracted from HTM o6-o1, 2017 edition

Secondary Supply

Point for plugin mobile generator facilitates further emergency support on generator breakdown / planned maintenance

Figure 16 Mobile generator connection

Secondary Supply

Diesel fuel supply and storage

- Dangerous Goods Ordinance
- Day tank
 - Diesel fed to generator by gravity
 - Capacity of 10 hours full load operation
- Bulk/Main tank
 - Diesel pumped to day tank
 - Capacity of 200 hours full load operation

Figure 19 Fuel day and bulk tanks with dual pumps and fire dump

Tertiary Supply
Uninterruptible power supply (UPS) system

- Single-conversion UPS
 - Battery autonomy up to 15 min.
 - used to safely shut down small computer equipment
- Double-conversion UPS
 - Battery autonomy ranges from 1 to 3 hours
 - Typically used for final circuits in high risk grade area (e.g. OT or ICU of grade A or B)

Tertiary Supply
UPS Configurations

- UPS N+1 resilience
 - Grouping multiple UPS units for single location
 - Redundant UPS units each capable of supporting full load with autochangeover

Source: Extracted from HTM o6-o1, 2017 edition

Tertiary Supply UPS system

- Maintenance bypass
- UPS room condition
 - Temperature and humidity control
 - Dust control
 - Avoid proximity to wet service
 - Arrangement of battery storage facilitating sufficient ventilation

ource: Extracted from HTM 06-01, 2017 edition

6. Other design considerations

Electromagnetic compatibility (EMC):

 Prevent interference with medical equipment

Earthing:

- System earth for protection
- Functional earth for electronic and IT equipment

Protection Discrimination:

- Protective devices coordinated to isolate fault
- Minimise services affected in case of electrical fault

Future maintainability and operability:

- Eliminate single point of failure
- Allow partial system shutdown for maintenance / PITC without affecting hospital operation

7. Operation and maintenance

▷ In compliance of requirements **Trade** practices Manufacturers' recommendation **Guidelines & Standards** (HTM o6, BS 7671, etc.) **Statutory Requirements**

7. Operation and maintenance

Preventive maintenance of critical equipment

Emergency generators

- On-load test using building load
- Test function of interlocks and changeover

UPS batteries

- On load Discharge test
- Test for batteries health status

Switchboard

- Test proper function of components (e.g. protective relays, etc.)
- Test for insulation and continuity
- Condition monitoring

7. Operation and maintenance

Power quality and energy monitoring

- Monitoring power supply condition and energy consumption with energy management system and devices
- Identify energy saving opportunities

Maintenance record keeping

- Keep track of equipment conditions
- Complete record of past adjustment, inspection and test results
- Maintenance schedule, replacement and resource planning

SUMMARY

Thank You